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New measurements of the Nusselt number have been made in turbulent thermal
convection confined in a cylindrical container of aspect ratio unity. The apparatus is
essentially the same as that used by Niemela et al. (2000), except that the height was
halved. The measurement techniques were also identical but the mean temperature of
the flow was held fixed for all Rayleigh numbers. The highest Rayleigh number was
2 x 10", Together with existing data, the new measurements are analysed with the
purpose of understanding the relation between the Nusselt number and the Rayleigh
number, when the latter is large. In particular, the roles played by Prandtl number,
aspect ratio, mean wind, boundary layers, sidewalls, and non-Boussinesq effects are
discussed. Nusselt numbers, measured at the highest Rayleigh numbers for which
Boussinesq conditions hold and sidewall forcing is negligible, are shown to vary
approximately as a 1/3-power of the Rayleigh number. Much of the complexity
in interpreting experimental data appears to arise from aspects of the mean flow,
including complex coupling of its dynamics to sidewall boundary conditions of
the container. Despite the obvious practical difficulties, we conclude that the next
generation of experiments will be considerably more useful if they focus on large
aspect ratios.

1. Introduction

A major item of interest in thermal convection is the heat transport across a
horizontal layer of fluid confined between two parallel plates when the bottom plate
is maintained sufficiently hotter than the top that the resulting flow is turbulent.
This problem is posed in terms of the dependence of the Nusselt number, Nu, on
the Rayleigh number, Ra, and the Prandtl number, Pr. Here, Nu is the ratio of the
measured total heat flux to that due entirely to molecular conduction. The Rayleigh
number is the non-dimensional measure of the prescribed temperature difference, and
is given by Ra = a ATgH?/vk, where « is the isobaric thermal expansion coefficient
of the fluid in the container, AT is the temperature difference between the bottom
and top walls, g the acceleration due to gravity, H the vertical dimension of the
convection cell; v and « are, respectively, the kinematic viscosity and the thermal
diffusivity of the fluid, and Pr = v/k. Of particular interest is the relation between
Nu and Ra when the latter is large. The interest arises not only because of the
intrinsic importance of the asymptotic state of thermal convection but also because
one encounters very large values of Ra in geophysical and astrophysical contexts (see,
for example, Sreenivasan & Donnelly 2001 for a discussion of the typical values of
Ra).
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Thus, there has been a push to attain high Rayleigh numbers in controlled
laboratory experiments (e.g. Castaing et al. 1989; Chavanne et al. 1997; Niemela
et al. 2000). In particular, the experiments of Niemela et al. (2000) (which will be
referred to as I henceforth) spanned 11 decades of Ra and reached 10!7. Despite
this and other significant efforts there are several unresolved questions relating to
the scaling properties of heat transport in the high-Ra range. The reason is partly that
the laboratory experiments have been in containers with the aspect ratio I', defined
here as the ratio of the horizontal dimension of the container to its vertical dimension,
of the order unity. The vertical dimension must be large to attain large values of
Ra and it is not always practical to scale up the horizontal dimension as well. Thus,
I' becomes an additional parameter in the problem. Other ‘practical’ problems are
that the Prandtl number in some recent experiments was not held fixed at the high
end of the Rayleigh number range, and it has been difficult to stay within the small
bounds of the so-called Boussinesq approximation when Ra values are large. Both
problems come into play simultaneously as the pressure or density of a heated gas
layer is pushed closer towards the critical values.

To understand these effects, we have made new measurements in a container of
aspect ratio unity and analysed the experimental conditions in several previously
published data. This work sheds new light on the subject, making moot a few
previous directions of enquiry; however, it raises additional questions that need to
be addressed. We interpret our findings in terms of existing theories about turbulent
convection, making comparisons with available data wherever possible. A qualitative
conclusion is that the constraint of small aspect ratio has important effects on the
state of convection, even at very high Ra, and that care should be exercised in
comparing existing data with theories that invoke infinite horizontal extent of the
flow. The inference is thus almost tautological that experiments at larger aspect ratio
and high Rayleigh numbers would have to be the next focus.

Section 2 highlights an unresolved puzzle in a way that naturally paves the way
for new experiments. The description of the experimental apparatus in §3 is followed
in §4 by a brief presentation of the new Nusselt number data. Section 5 considers
heat transport at intermediate Rayleigh numbers, and is followed by §6 devoted
to heat transport at high Rayleigh numbers under Boussinesq conditions. The
boundary layer structure under possibly non-Boussinesq conditions is discussed in § 7,
and concluding remarks are presented in §8. The appendices summarize important
aspects secondary to the main thread of the paper.

2. An unresolved puzzle

An unsolved puzzle in turbulent convection is illustrated in figure 1 where we have
plotted Nu against Ra from I and Chavanne et al. (2001), which we shall henceforth
refer to as II. For the present discussion, only a part of the Ra range covered in I
and II is shown. Note that the data from II differ somewhat from those tabulated
in Chavanne (1997) (see also Chavanne et al. 1997) because of an adjustment to
the 1990 International Temperature Scale. This adjustment, though quantitatively
significant for Ra > 10'!, does not make any difference to the qualitative conclusions
to be drawn.

There are conspicuous differences between the two sets of data, both in the
magnitude and the rate of increase of the heat transfer with Ra. This latter aspect
is further illustrated in the inset. Here, it can be seen that the exponent 8 in the
presumed power-law relation Nu = mRa® varies little, by comparison, over the entire
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FIGURE 1. The variation of the Nusselt number with the Rayleigh number in log-log
coordinates, from I (O) and II (A), illustrating the difference for Ra > 10'2. Inset shows
approximate local slopes, Bi,cat = dlog(Nu)/dlog(Ra), obtained by least squares fits over
running intervals of three decades. Various trials suggest that local slopes are less robust if
shorter running intervals are used.

range of I, with an average value of about 0.31. In contrast, in II the slope increases
sharply for higher Ra, approaching its maximum value of nearly 0.4 at Ra ~ 10'2,
so this behaviour has been regarded as being consistent with Kraichnan’s (1962)
prediction of Ra'/?/[(In Ra)*/?]. It is important to point out, however, that the slopes
are necessarily averages computed over 3-decade intervals of Ra (see caption to
figure 1) and hence are only approximate indications of the local behaviour. For
the same reason, they cannot address the behavior at the highest Ra, which we will
consider more appropriately below (see §6.2).

Both sets of data were obtained in cylindrical containers of aspect ratio 1/2.
In addition, several discussions among the participants in these two experimental
programs have indicated that minor differences in the apparatus and measurement
methods cannot explain the differences; this point will be put on a considerably
firmer foundation by the new data to be presented in §4. It is legitimate to ask if the
observed differences are due to differences in Pr values, particularly since the aspect
ratio is the same for the two experiments. In principle, the flow depends on both Ra
and Pr and, as mentioned in § 1, Pr in both experiments varies simultaneously with
Ra when Ra is high.

This question may be discussed in terms of the Ra—Pr phase diagram proposed by
Grossmann & Lohse (2000, 2001, 2002). From considerations of the energy and tem-
perature dissipation rates in boundary layers and the bulk, these authors isolated
possible states of convection; the essential aspects of their results are reproduced
in figure 2. These authors noted that, while each region would in principle exhibit
unique scaling relations between Nu and Ra, the influence from other regions would
in practice influence the power laws, this influence being more or less dependint on
the distance to neighbouring regions. The two sets of data from I and II are plotted
in figure 2. Except at low Rayleigh numbers, both sets of data are within region IV,
suggesting the possibility that they should possess the same behavior. That this does
not happen suggests the presence of additional aspects of the problem. One such
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FIGURE 2. The data from I (O) and II (A) are plotted in the phase diagram of Grossmann &
Lohse in the (Ra, Pr)-plane. Marked by Roman numerals are regions of different characteristic
power laws, although neighbouring regions can have some influence on the observed power
laws, depending on the nearness to boundaries. In particular, data that span more than one
region are not expected to have a pure power law, but combinations of them. The thick
long-dashed line denotes the minimum Ra for which the velocity boundary layers are likely
to be turbulent (see Appendix A). The dotted line just to the right of it results from a new
calculation by Grossmann & Lohse (2002) for the onset of turbulence in the velocity boundary
layer. It replaces their earlier boundary (Grossmann & Lohse 2001) shown farthest to the right
as the full line. While these boundaries are not sharp, their location has some bearing on the
interpretation of differences between the two data sets shown.

aspect is the transition of the velocity boundary layer from laminar to the turbulent
state. The long-dashed line in figure 2, given by (A 3) in Appendix A (see also
§7), denotes a rough approximation to the minimum Ra below which the velocity
boundary layers does not remain turbulent. A recent theory of Grossmann & Lohse
(2002) (see also their 2000 paper) gives another plausible boundary for the transition
between the laminar and turbulent states; this is shown by the dotted line in figure 2.
The relevance of this boundary to the observed heat transfer depends, among other
factors, on the relative thicknesses of the thermal and viscous boundary layers, as will
be discussed in §7.

3. Some experimental details of the new measurements

Selective repeats of the measurements of I only served to confirm them, so we
altered the convection apparatus in the simplest possible manner to allow new
measurements and focus attention on flow physics. The apparatus, cylindrical in
shape, was the same as in I except that its height was halved from 100cm to 50 cm
(new I' = 1). The top and bottom plates, 3.8 cm in thickness, were made of copper
annealed under oxygen-free conditions; its thermal conductivity at a temperature of
5 K was a relatively high value of order 2kW m~! K~!. Special efforts were made
to heat the plates uniformly. A constant heat flux occurred at the bottom plate
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whenever experimental conditions were altered, but measurements were begun only
after a constant temperature was reached in the steady state. The top wall was
connected to a helium reservoir through a distributed and adjustable thermal link,
and its temperature was maintained constant by means of a resistance bridge and
servo. The stainless steel sidewall had a thickness of 0.267 cm. The inner convection
cell was insulated by three thermal shields at various graded temperatures, residing
in a common vacuum space. Due to the relatively large height of the apparatus,
corrections were made for the small adiabatic temperature gradient across the fluid
layer (see Tritton 1988, appendix to chapter 14).

For a subset of measurements, a further modification of the apparatus was made
by adding an insulating layer of polyethylene terephthalate (Mylar) to the entire
inner surface of the sidewall. One purpose of adding the insulation, motivated by
discussions in Ahlers (2001) and Roche et al. (2001), was to reduce the lateral heat
currents near the horizontal boundaries through the addition of an extra thermal
impedance (an effect nominally estimated to require a correction of a few percent
to Nu at moderately low Rayleigh numbers). Specifically, the Mylar strip had a
thickness of 0.127 mm overall, but the flange region just above the bottom plate
and also below the top plate, connecting these plates to the sidewall, was covered
with an additional 2.5cm wide strip of the same Mylar sheet. A thin layer of low-
viscosity Stycast 1266 epoxy was used to bond the Mylar sheets to the sidewall.
From Childs, Ericks & Powell (1973), we estimate the conductivity of Mylar to be
approximately between 0.0015 and 0.002 W m~! K~! at a temperature of 5 K (using
a linear extrapolation from 28 K in log-log coordinates of thermal conductivity and
temperature). The conductivity of Type 304 stainless steel at the same temperature
(see Jensen et al. 1980) is approximately 0.25W m~! K~!. The sidewall resistance is
thus judged to have increased by roughly an order of magnitude, for moderate Ra,
with respect to lateral conduction between the fluid and the sidewall.

For the new data, the mean cell temperature was kept within the limits
Ty = 5.34+0.02 K. Holding the mean temperature fixed has the advantage that the
variation of fluid properties occurs through pressure dependence alone. In practice,
this increases the precision with which Nu and Ra can be determined. This increased
precision is manifested as reduced scatter in subsequent figures. The data, especially
at high Ra, were not all taken in a chronological sequence; that is, no particular
history was imposed on the system and no hysteresis was observed. All quantities
are evaluated using fluid properties at the mean temperature. (In low-Rayleigh-
number convection, this practice ensures that measures of non-Boussinesqness remain
small even if there are small deviations from vertical symmetry about the mid-
plane; see Busse 1967. For our conditions, it is merely the most logical thing to
do.) The critical temperature and density, corresponding to the temperature scale
used (1990 International Temperature Scale) are, respectively, Tc = 5.195K, and
pe = 69.64kgm™3.

The Nusselt numbers were calculated by subtracting the parallel ‘empty cell’ sidewall
conduction. This ‘correction’ is now known to be in principle inadequate because the
temperature gradients in the sidewalls are much sharper where they connect to
the bottom and top plates (Ahlers 2001; Roche et al. 2001, appendix B) when the
enclosed fluid has a thin thermal boundary layer structure (i.e. under conditions
of high imposed heat flux). In fact, an additional adjustment appears necessary for
Ra < 10" if our interest lies in Nusselt numbers for the ideal case of adiabatic
sidewalls (see, particularly, the recent numerical results of Verzicco 2002, for I' =
1/2). While we discuss this problem at some length below and in Appendix B, we



360 J. J. Niemela and K. R. Sreenivasan

have not attempted to make these corrections explicitly: a quantitatively precise
magnitude of this correction is still difficult to determine, and even a complete
qualitative understanding seems elusive, at least for general I". We point out, however,
that our interest is in the high-Rayleigh-number range, where this type of correction
becomes diminishingly small. No corrections have been applied to any data among
which we make comparisons throughout, these having been obtained in cryogenic
apparatus very similar to ours in terms of sidewall effects (Roche et al. 2002).

The heat leaked from the bottom plate into the sidewall has various effects. Some
of that heat returns to the fluid very near the bottom of the sidewall through
conduction, participates in the convection process within the apparatus, and escapes
again by conduction into the sidewall near the top of the sidewall, finally escaping
into the top plate. To the extent that this heat participates in convection, one may
be tempted to think that this is not a major concern. On the other hand, if one
looks only at the global balance just at the level of the bottom and top plates,
and ignores what happens in between, it appears that a correction will indeed be
needed. In fact, the Nusselt numbers which take account of only the ‘empty-cell’
correction are found to be reasonably close to the exact Nu calculated from turbulent
heat flux for the confined system (Verzicco 2002), even though the details of the heat
current in the walls are quite complicated. The main effect of the sidewall conduction,
deduced from the numerical simulations of Verzicco (2002), is the forcing it provides
to the mean flow by the lateral component of the heat current. This effect, obviously
absent in the ideal case, cannot be parameterized readily; in particular, it would a
priori seem that the forcing would depend sensitively on small details of boundary
conditions. Moreover, this might be expected to be sensitive to the aspect ratio, since,
for example, the mean flow structure exhibits qualitative and measurable differences
between I' = 1/2 and I = 1 (Verzicco & Camussi 1999, 2003; Qui & Tong 2001). An
argument could be made that the mean flow that is characteristic of aspect ratio unity,
consisting of a single roll embedded within the entire apparatus, would be subject
to either enhanced or depleted buoyancy from sidewall currents. This has already
been proposed by Sreenivasan, Bershadskii & Niemela (2002) as an explanation
for the occurrence of occasional and non-periodic reversals of the mean flow
direction.

4. New data on the Nusselt number

Figure 3 compares the new Nusselt numbers with those from I and II. (Table 1
presents a useful list of experimental parameters, some of which are considered in
later sections.) The similarities are obvious, but the new data differ in detail from
those of both I and II. In particular, consistent with the thinking of Grossmann &
Lohse (2000), it is clear that a single power law is inadequate to describe the heat
transfer scaling in the new data over the entire range of Ra, even though, to the lowest
order, such a fit holds good for the case I' = 1/2. A resolution of the differences
should contribute to a fuller understanding of the high-Ra convection. This is our
major goal here. We emphasize that the bottom and top plates, as well as the entire
thermal control and measurement system, were identical in the present experiments
and I. This fact, as we shall see more clearly below, negates the likelihood that some
unknown detail in boundary conditions or measurement procedure may explain the
puzzle introduced in §2.

A more refined comparison of differences among the three experiments is made in
figure 4, where we plot Nu compensated by Ra’*". The exponent of 0.309 comes from
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FIGURE 3. The variation of Nusselt number with Rayleigh number in log-log coordinates,
from I (O) and II (A), compared with the present data (®). Only data determined to be
‘nominally’ Boussinesq by the various authors are shown. For all sets of data, this nominal
criterion corresponds roughly to « AT < 0.2. We shall examine the adequacy of this criterion
in §6.1 and Appendix C.
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FiGURE 4. The Nusselt number data normalized by the 0.309 power of Ra for the same data as
in figure 3. The present data (@) are similar to II (A) for low Ra but fall roughly intermediate
between I (O) and II for high Ra. As in figure 3, only the data for which nominal Boussinesq
conditions hold have been plotted.

I for aspect ratio 1/2 where it represents a lowest-order fit over the entire range of
Ra, and is used here for nominal comparisons only. In relation to I, the data from
IT lie slightly above for low Ra, go below for an intermediate range of Ra, and rise
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0 (mW) AT (mK) Ty (K) p(kgm™) v (m?s™) Ra Nu Pr  aAT
114 171 5.39 0.0201 6.63 x 1075 597 x 10° 16.2 0.68 0.032
20.1 264 5.43 0.0200 6.74 x 107 8.86 x 10° 18.4 0.68  0.049
20.1 214 5.41 0.0321 4.17x1075  1.88 x 10’ 22.9 0.68 0.040
114 119 5.36 0.0436 3.05x 1075 1.98 x 107 23.6 0.68 0.022
114 117 5.36 0.0463 2.87 %1075  2.19 x 107 24.0 0.68 0.022
5.06 50.4 5.33 0.0788 1.68 x 10> 2.75x 107 253 0.68 0.010
20.1 183 5.40 0.0465 2.87x 1075 3.40x 107 27.1 0.68 0.034
114 93 5.35 0.0784 1.69 x 10 5.03 x 107 30.5 0.68 0.018
114 76.8 5.34 0.121 1.09 x 1073 9.93 x 10’ 37.2 0.68 0.015
20.1 120 5.36 0.122 1.09 x 107> 1.56 x 108 41.7 0.68 0.023
114 55.2 5.33 0.265 499 x10°% 3.45x 108 52.2 0.68 0.011
20.1 86 5.34 0.265 502x10°¢ 534 x 108 58.8 0.68 0.016
314 122 5.36 0.266 501 x10°¢  7.58 x 108 64.6 0.68 0.023
20.1 64.9 5.33 0.505 2.63x107%  1.48 x 10° 78.5 0.69 0.012
314 92 5.35 0.504 2,64 x 107%  2.09 x 10° 86.0 0.69 0.018
45.2 122 5.36 0.507 2.63x107% 279 x 10° 92.6 0.69 0.023
20.2 48.3 5.32 0.987 1.35x107° 430 x 10° 106 0.69 0.009
31.5 68.5 5.33 0.985 1.36 x 107°  6.08 x 10° 116 0.69 0.013
45.2 91 5.35 0.986 1.36 x 107°  8.06 x 10° 125 0.69 0.018
61.6 116 5.36 0.988 1.36 x 107°  1.02 x 101° 133 0.69 0.022
45.2 74 5.34 1.55 8.66 x 1077 1.66 x 10'° 154 0.70 0.015
80.8 116 5.36 1.55 8.69 x 1077 2.58 x 10'° 175 0.70  0.023
61.4 79.9 5.34 2.16 6.24 x 1077 3.59 x 10'° 193 0.71 0.016
102 118 5.36 2.16 6.26 x 1077 5.24 x 10'° 216 0.71 0.024

80.7 74.7 5.34 3.69 371 x 1077 1.04 x 10" 270 0.74 0.016
126 105 5.35 3.69 3.72x 1077 1.44 x 10" 299 0.74 0.022
102 78 5.34 4.68 295x1077  1.82x 10" 325 0.76  0.017
126 76 5.34 6.42 2.18x 1077  3.59 x 10! 408 0.79 0.018
126 63.9 5.33 8.41 1.69 x 1077 5.65x 10! 481 0.82 0.016
126 524 5.33 11.19 1.30x 1077 9.32 x 10! 581 0.88 0.015
152 53.3 5.33 13.28 1.12x 1077 1.48 x 10" 681 092 0.017
181 54.5 5.33 15.12 9.95x107%  2.16 x 102 782 097 0.018
282 84.9 5.34 13.27 1.12x 1077 2.34 x 10" 784 0.92  0.026
283 76.2 5.34 15.11 9.98 x10~%  3.01 x 102 865 097 0.026
502 104 5.35 17.26 890 x 10~% 598 x 10'2 1100 1.02  0.038
501 71.4 5.34 24.79 6.54 x 1078 139 x 10" 1510 1.30  0.038
501 65.2 5.33 26.77 6.14 x 10~%  1.73 x 10" 1628 1.40 0.039
722 85.5 5.34 26.74 6.16 x 1078 224 x 10 1776 1.39  0.051
321 35.8 5.32 32.48 525%x107%  230x 103 1831 1.79  0.030
502 49.8 5.33 3243 526 x107%  3.18 x 103 2030 1.78  0.042
722 65.5 5.33 324 527 x107% 414 x 10 2202 1.77  0.055
502 349 5.32 39.65 451x10°%  7.20x 108 2712 2.61 0.048
783 48.7 5.32 39.57 452x107% 987 x 108 2992 2.58 0.066
783 35.6 5.32 45.69 407 x107%  210x 10" 3843 381 0.078

1127 47.2 5.32 45.57 408 x10°%  2.65x10"“ 4128 372 0.101

1282 354 5.32 51.9 3.73x 1078  6.45x 10" 5813 592 0.130

1489 39.8 5.32 51.79 3.73x10°%  6.85x 10 5990 576 0.142

981.7 20.2 5.31 57.73 347 x 1078 1.08 x 1015 7446 9.33  0.125

1281 25 5.31 57.41 348 x 1078 123 x 1015 7756 894 0.148

1712 31.5 5.32 57.04 350 x 1078 1.42 x 1015 8147 853 0.176

1127 16.5 5.31 63.43 327x107% 210 x 1015 9832 134 0.155

TaBLE 1. Various parameters for the present apparatus, I = 1. Ra and Nu have been corrected
for a small adiabatic temperature gradient (approximately 1-2 mK across the cell — see text).
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above again at higher Ra. The new data for unity aspect ratio display some of the
same characteristics of II for low Ra but fall roughly between the other two for high
Ra.

For convenience of further discussion, we loosely subdivide the Rayleigh number
range into three parts. At the low end, say Ra < 10°, heat transport is measurably
susceptible to details of boundary conditions on the sidewall, and so one has to
consider this feature before arriving at firm conclusions. These details are relegated to
Appendix B, as already mentioned. In the intermediate range of Ra (say 10° < Ra <
10'?), the large-scale circulation, resulting from the self-organization of thermal plumes
expelled from the top and bottom boundary layers and often called the mean wind
(e.g. Castaing et al. 1988; Niemela et al. 2001a; Qiu & Tong 2001; Sreenivasan et al.
2002; and Appendix D), seems to play a conspicuous role in convection dynamics;
notably, the boundary layers on the bottom and top walls are connected through the
wind and the size of the apparatus is thus felt by the convective motion. Beyond
Rayleigh numbers of order 10!2, the time-averaged mean wind becomes less and less
well-defined, and the boundary layers set up by the unsteady large-scale motion are
likely to be fully turbulent (see Appendix A). As might be expected, the nature of
convection changes as a consequence. This will be designated the high-Ra regime.

5. Heat transport in the intermediate-Rayleigh-number regime

Existing estimates suggest that the direct effects of sidewall conduction are reduced
to the order of a few percent in this range (see Appendix B). Furthermore, figure 2
shows that the Prandtl numbers from the present experiments and I are constant in
this range, though somewhat less so for II. We shall also see in §6 that the present
flow obeys the Boussinesq approximation quite closely, so presumably the Nusselt
numbers measured in the region are not affected much by associated artifacts.

It therefore comes as a surprise to us that the agreement among different
experiments in this regime is relatively poor, far beyond measurement uncertainties.
This can be appreciated from figure 5, in which representative data sets are plotted.
We draw several lessons. The open squares and filled circles in the figure are obtained
in the same apparatus except for the change of aspect ratio from 1/2 for T to
unity for the present data. It is tempting to infer that the differences here are
primarily due to the changed aspect ratio. However, the new data for aspect ratio
unity are generally in better agreement with the data of II for I' = 1/2 (which,
because of their relatively larger scatter, are not shown here — but see figure 4).
We also show data from Roche (2001), obtained in the same apparatus as II but
with systematically roughened walls. Note that this roughness is immaterial here
since the walls are ‘hydrodynamically smooth’ (P. Tong, private communication) at
these Rayleigh numbers, i.e. the boundary layers are still thicker than the height of
the roughness elements. A subset of Roche’s data, open triangles corresponding to
Pr = 0.7 and open circles corresponding to Pr = 1.5, are in general agreement with
the present data (I = 1, Pr = 0.7), while his data for Pr = 1.1, shown by filled
triangles, agree well with I (I" = 1/2, Pr = 0.7). Further, the plusses from Wu (1991)
(I' =1, Pr = 0.7) also agree with I (I" = 1/2, Pr = 0.7). On the other hand, Wu’s
data for I = 1/2, Pr = 0.7 agree with the present data (I" = 1, Pr = 0.7). Finally,
the data from Xu, Bajaj & Ahlers (2000) (I" = 1/2, Pr = 4) lie close to, though just
above, the present data (I" =1, Pr = 0.7).

In the above discussion, we have provided Prandtl numbers and aspect ratios for
each experiment. There does not appear to be any obvious correlation with either.



364 J. J. Niemela and K. R. Sreenivasan

TTT T T T T

] R + T
++ + +
Ty o+ 4+ + A
o + +
JEDDDJJ oQd AQ§++++ D+D+ +aA
0.12 o Do o

aﬂ A
5 A A DE ﬁﬂ] _EDDD ol
jm}

Y

Nu ~ A ﬁ

e A% e
R i
Vit ]

™,
011 ™3¢ *ﬁr.\._.‘ﬁ. .
ol A919-9 ’/
*r ) *
® R
0.10 | ¥ fr e i
*
109 1010 1011 1012

Ra

FIGURE 5. Nusselt numbers for the intermediate range of Ra. O, I (I" = 1/2, Pr = 0.7); @,
the present data (I" = 1, Pr = 0.7); A, Roche (2001) (I" = 1/2, Pr = 0.7); O, Roche (2001)
(I" =1/2, Pr = 1.5); A, Roche (2001) (I" = 1/2, Pr = 1.1); 4+, Wu (1991) (I = 1, Pr = 0.66);
Y, Wu (1991) (I' = 1/2, Pr = 0.66); X, Xu et al. (2000) (I" = 1/2, Pr = 4). At least for
Nu < 10'!, the Nu data appear to lie broadly in two bands, uncorrelated with either I" or Pr.

The prevailing evidence from Ahlers & Xu (2001), Lam et al. (2001) and Roche
et al. (2002) is that the dependence of Nu on the Prandtl number is negligible in the
ranges of Ra and Pr considered. The simulations of Kerr (1996) and Kerr & Herring
(2000), when taken together, essentially agree with this conclusion. We will return to
this issue later, but, assuming for now that Pr matters little, we are led to examine
the role of the aspect ratio. While the aspect ratio appears to play some role in
determining Nusselt numbers for intermediate Ra (Wu & Libchaber 1991; Niemela
et al. 2001b; Xu et al. 2000), it is clear that the differences just listed cannot be simply
parameterized by this one factor.

Within this complexity, however, it appears that the data fall roughly within
two main bands. This is so even if one restricts attention to the recent high-Ra
helium experiments that are nominally similar. This suggests the possible existence of
different time-averaged states of the flow for a given set of conditions, which has been
recently raised by Roche et al. (2002) experimentally, and by Verzicco & Camussi
(2003) numerically. Roche et al. (2002) conclude that the factor that correlates best
with these different states is the mean wind, which itself is determined in some yet
unknown way by details such as Pr and geometric parameters of the apparatus (not
all of which are represented by the aspect ratio alone). And, even for fixed aspect
ratio, the mean wind changes character with Ra. Verzicco & Camussi (2003) observe,
for I' = 1/2, that the mean wind changes from a weak re-circulation over the entire
height of the apparatus, coupled with a stronger but more localized toroidal roll
at the top and bottom boundaries at low Ra, to a two-cell structure of equal size,
stacked one above the other, and a weaker toroidal roll structure at higher Ra. Such
differences seem to arise from delicate interplay among detailed geometry as well as
Prandt]l and Rayleigh numbers.
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From such considerations, we tentatively conclude that the mean wind is a potential
candidate for explaining differences among experiments in the intermediate range of
Ra, without appealing in detail to possible coupling to the sidewall thermal conditions
as discussed above. The mean wind has other effects as well — for example, in
establishing velocity boundary layers, whose importance we shall examine in §7. We
shall also consider in Appendix E the total energy dissipation as a function of the
Reynolds number of the mean wind.

6. High Rayleigh numbers

The questions we wish to address here are: (a¢) What is the nature of the heat
transport at the highest Rayleigh numbers measured, for which deviations from the
Boussinesq approximation are kept small, say below about 5% ? (b) When Boussinesq
conditions seem to have been seriously violated, what is the qualitative nature of heat
transport?

6.1. The Boussinesq approximation

In the experiments considered, very high Rayleigh numbers are usually attained
by closer approach to the critical point of the gas, and hence are associated with
increasingly steep temperature dependences of the various relevant fluid properties.
Because the temperatures of the bottom and top plates are maintained AT apart,
this feature has the effect of producing measurable differences in fluid properties in
the bottom and top boundary layers. This vertical asymmetry introduces a variety
of additional parameters into the problem. Near the convective onset, for instance,
vertical asymmetry can alter the flow structure (Palm 1960; Busse 1978), but less is
known about the consequences in the high-Ra range.

Figure 6 shows, for the present measurements, the differences between the top
and bottom values of specific heat, kinematic viscosity, thermal expansion coefficient,
thermal diffusivity, and thermal conductivity of helium gas, as a fraction of their
mean values. These fractional deviations are all of the order of 5% or less up to a
Rayleigh number of 10'%, beyond which a few of them rapidly increase with Ra as
the critical point of the fluid is approached. Similar deviations occur in I and IL

To ascertain the relevance of these to turbulent convection, we consider the
following. In the steady state, the heat transported from the bottom wall to the fluid
layer must be transported entirely from the fluid layer to the top wall (ignoring, of
course, possible effects of the sidewall). This means that the mean temperature slopes
at the two walls have to adjust to the different thermal conductivities of the fluid at the
two walls, leading to unequal drops of temperature across the two thermal boundary
layers. The ratio of the temperature drops, Ac/Apg, where Ac is the temperature
drop across the cold thermal boundary layer and Ay that of the hotter boundary,
can be estimated from a knowledge of the temperature-dependent fluid properties
(Wu & Libchaber 1991), and is plotted for the present data in figure 7. Consistent
with the other criteria, Ac/Ay deviates from unity by less than about 5% up to
Ra ~ 10", and increases more rapidly beyond. We make a more detailed examination
of non-Boussinesq effects in Appendix C.

These figures suggest that some degree of ‘non-Boussinesqness’ prevails for Ra =
10 in the present experiments. Such effects begin to occur for even lower Ra in 11
and do not appear until higher Ra in I. Although none of this necessarily tells us
the degree to which non-Boussinesq effects are important in determining the Nusselt
number, it is clear that we must exercise caution in comparing data at the highest
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FIGURE 6. The fractional deviation about the mean of various fluid properties for the present
data: @, specific heat, Cp; +, kinematic viscosity, v; O, thermal expansion coefficient, «;
A, thermal diffusivity, «; V, thermal conductivity, kr. These quantities vary by less than 5%
for Ra up to 10'%, but some of them vary by as much as 20% by Ra = 10%°.

1.00
‘e
N 0.95 °
C
-— [ ]
A, ]
0.90 .?
0.85
108 108 1010 1012 10 1016

Ra

FIGURE 7. The ratio of estimated temperature drops across the top (Ac¢) and bottom
(Ap) thermal boundary layers defined, from Wu & Libchaber (1991), as Ac¢/Ay =
(agveke)/(acvakm) (kg /ke). The ratio is a direct measure of the vertical asymmetry
and is a measure therefore of non-Boussinesq conditions (see Appendix C for its relation
to other measures). In conformity with figure 6, the measure also implies a deviation from
Boussinesq conditions of magnitude less than 5% for Ra < 10,

Ra attained with theories of Boussinesq convection. We note that in I, II and the
present data the deviation from unity of the non-Boussinesq parameter Ac/Ay does
not occur independently of the average increase in Pr — both effects principally occur
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as functions of Ra in the present measurements.

for the same reason in helium experiments, namely a closer approach to the critical
point. (There is, of course, no general relationship between Prandtl number and non-
Boussinesq conditions.) This is illustrated in figure 8, where two Boussinesq criteria
are plotted, together with the Prandtl number, as functions of Ra. A cautionary lesson
from here is that the trends in the data that one might be tempted to attribute to an
increase in Pr could equally well be correlated with the increase in 1 — Ac/Ay, or
vice versa.

6.2. High-Rayleigh-number convection under stricter Boussinesq conditions

In the light of this discussion, it is interesting to consider the limiting form of the
heat transfer when the asymmetry parameter A./Ay deviates from unity by 5% or
less (‘stricter Boussinesq’). In figure 9, we plot the Nusselt numbers from the present
experiments in such a range. Data from I and II are also plotted for the same range
of Ra. The data sets are displaced (by prescribed amounts) for clarity of presentation.
In the last decade and a half, all three sets of data in figure 9 (beyond the dotted line)
are roughly consistent with a scaling exponent of 1/3 (see, also, Goldstein, Chiang &
See 1990). The data in this region are precisely repeatable and are further highlighted
by figure 10. In fact, this is just the prediction of Grossmann & Lohse (2001) for their
region IV, within which, as we have seen in figure 2, both data sets lie. However,
questions of whether this region pertains to the infinitely extended and perfectly
Boussinesq systems cannot be adequately answered from considerations so far.

7. High-Rayleigh-number convection for criteria under which departures from
Boussinesq conditions are large

We have pointed out that measurements towards the high end of Ra correspond to
increasingly non-Boussinesq conditions in each of the three measurements (I, II and
the present). It should therefore not surprise us if a unique Nusselt number does not
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obtain in this range for a given Ra, Pr and I'. We can discuss the physics in this
high-Ra region only qualitatively.

Let us reconsider the puzzle posed at the beginning of the paper, namely the
differences between I and II in the high-Ra range. We expect that no large-scale time-
averaged ‘modes’ of convection are present in this range. This is so because the
mean wind, as inferred from measurements, oscillates rapidly — thus averaging over
long times to negligible values (Niemela et al. 2001a; Sreenivasan et al. 2002). Yet,
the transient large-scale motions do set up boundary layers of the type visualized
by Kraichnan (1962). The nature of heat transfer must therefore involve changes in
the structure of these boundary layers. We consider two limits: one in which the
thermal boundary layer is dominated by the shear in the velocity boundary layer,
and another in which the former is entirely independent of the latter. The boundary
between the two states, however ill-defined in practice, is of some interest for the
present discussion.

7.1. Boundary layer thickness ratios
The thickness of the thermal boundary layer is given by the well-known formula

2JH = 1/(2Nu). (7.1)

It is perhaps useful to note that the formula rests on the simplistic assumption that
the temperature distribution in the boundary layer can be approximated by a linear
distribution with the correct slope at the wall. If we use Howard’s (1966) model to
write

). = H(Ra./Ra)"?, (7.2)

where Ra, is the critical Rayleigh number for the onset of convection, and take Ra,
to be 0(10%), as did Howard, we obtain

JJH ~ 10/Ra'’". (7.3)

There is, of course, no serious justification for using Howard’s estimates, so we may
use, instead of (7.3), equation (7.1) with Nu taken from measurements.

The velocity boundary layer thickness can be defined in at least two ways. One
definition is through the mean velocity gradient at the wall, analogous to that of the
thermal boundary layer thickness through the wall gradient. Denote this thickness by
81. More precisely, 8; is the distance from the wall where the two straight lines, one
tangent to the velocity profile at the wall, and another tangent to it at the position
of maximum velocity, meet. (The position of maximum velocity, to be denoted by
8, defines the boundary layer thickness in the classical sense of Prandtl; we will
exploit this feature in Appendix F.) A second definition is through the distance
at which the turbulent shear stress in the boundary layer is equal to the viscous
stress. Nominally, turbulent fluctuations will not penetrate closer to the wall than this
thickness, denoted here by 8,. In Appendix F, it is shown that

81/ = 634" BNy Pr®3 ) Ra*423, (7.4)
and

85/4 = 6487 P NuPr®®/Ra"**. (7.5)

Both equations have a similar structure, which is reassuring. If we use the empirical
fit obtained in I for Nu, we obtain, for instance,

82/ = 16Pr"%% ) Rq% 136, (7.6)
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The condition corresponding to the unity value for 8,/ in the (Pr, Ra)-plane is given
by

Pr = Ra"**/905, (7.7)
which is very similar to that of Malkus (2001), namely
Pr = Ra"'%"/140, (7.8)

obtained from different considerations. The two numerical values (7.7) and (7.8) are
quite close for a range of Rayleigh numbers, and to the boundary for the crossing of
the viscous and thermal boundary layers deduced by Shraiman & Siggia (1990). The
latter is given approximately by

Pr = (Ra/10%%)'/4 (7.9)

where the normalizing Ra of 10" is taken roughly halfway within the range given by
those authors (3 x 102 — 2 x 10'4).

The unity value of §;/4 or 8,/4 can be thought to distinguish the shear-dominated
conditions near the wall from those dominated by thermal plumes. Thus, when both
Ra and Pr vary in an experiment, whether or not one attains the shear-dominated
regime depends roughly on the relative rates of variations of Ra and Pr — according
to Pr/Ra’', say, taking the estimate of (7.7) as the example. The ratio 8,/ attains
unity value in I roughly for Ra ~ 10" — the values of this ratio for II and the
present data are approximately 4 and 2.5, respectively. Thus, the boundary layer in
I is close to being shear-dominated whereas that in II is more responsive to plumes
and thermals. (The present case lies in between.) For the plume-dominated case, we
remark incidentally that Howard’s (1966) estimate of an upper bound for the heat
transport, given by

Nu = 0.126R%/3. (7.10)

comfortably bounds the data.

We have plotted in figure 11 the three data sets in the (Pr, Ra)-plane together with
equations (7.7)—(7.9). This comparison supports the conclusion that I is more likely to
be shear-driven and II thermally driven, and suggests that Kraichnan’s theory might
be more appropriate to I than to II. Interestingly, this is not contradicted by the
data of I: even though they yield a constant slope close to 0.31, they are consistent
with Kraichnan’s formula (Nu oc Pr='/*Ra'/?/[(log Ra)*/*]), because the Pr and log Ra
terms together yield an effective asymptotic slope of 0.315 over the ranges of Ra and
Pr covered in L.

7.2. Comments on heat transport in very high-Ra experiments

Since the conditions corresponding to Kraichnan’s ‘ultimate state’ appear, from these
considerations, to be more applicable to I than to II, we are now left to explain
why II measures a larger heat transport for Ra 2 10'? than either I or the present
experiments. This paradox can be understood from a further consideration of the
relative thicknesses of the velocity and thermal boundary layers.

The velocity boundary layer has a certain fraction of its thickness near the wall
within which the transport occurs principally by viscous action. If the thermal
boundary layer is entirely embedded in this part of the velocity boundary layer,
it is natural to think that the turbulence in the boundary layer would have little
impact on heat transport. On the other hand, if the two thicknesses are comparable,
or if the turbulent velocity boundary layer is embedded in the thermal layer, the
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FiGURE 11. The variation of Pr with Ra for the three experiments shown in figures 3 and 4.
O, I; A, 11; @, the present data. For Ra > 10'°, all three sets of data lie essentially in the
same sub-region IV, of Grossmann & Lohse (2001) (see figure 2). The solid line is Malkus’s
expression (7.8) for unity value for the ratio of the velocity boundary layer to the thermal
boundary layer. The dashed line marks the same condition for the ratio /4 (see (7.7)). The
two lines are quite similar, especially if we allow for the uncertainty in these estimates. Also
shown is the boundary (7.9) according to Shraiman & Siggia (dot-dashed line). The various
lines suggest that I may be closer to forced convection and II may correspond more closely to
free convection. The present data lie in between.

transport may be expected to be influenced strongly by boundary layer turbulence.
The ratio of the thicknesses of the two boundary layers depends on Pr.

In the intermediate-Rayleigh-number range, as well as that portion of the higher-Ra
region where stricter Boussinesq conditions prevail, the available evidence indicates
that the Pr-dependence is negligible (see §5). But, for very high Ra, the state of
the boundary layers in I, II, as well as present experiments is continually changing
because both Ra and Pr change simultaneously. It is therefore not obvious that
the Pr-dependence would be negligible. Kraichnan (1962) built these effects into
his results, but emphasized that the estimates were uncertain. His main qualitative
message, however, is that the heat transport is promoted if the Prandtl number is low.

Kraichnan’s work considers the case when boundary layer fluctuations reach all
the way into the thermal boundary layer so that all parts of it are influenced by
turbulent fluctuations. However, it is unclear a priori if this enhances or inhibits heat
transport. While the generation of small scales in the boundary layer would enhance
heat transport (as Kraichnan assumed), the nearness to the boundary will also restrict
the vertical scale of convective movements and thus inhibits heat transport (Townsend
1959). It is thus possible that the largest amount of heat transport in these experiments
may not be associated with boundary layer fluctuations expected for lower Prandtl
number (as visualized by Kraichnan), but rather by the converse: for large Pr, the
thermal boundary layer does not feel the effects of small-scale fluctuations, and would
behave essentially as that on a flat plate with no mean flow at its exterior. This is
akin to the case of pure free convection, for which plumes are the most favoured
form of heat transport (see, for example, Sparrow, Husar & Goldstein 1970). Visual
observations of thermal convection suggest that plumes not only transport heat
effectively, but also produce large-scale velocity fluctuations. It is plausible then that
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the heat transport generated in this way is stronger than the enhancement due to
fluctuations in boundary layer turbulence.

8. Conclusions

Numerous discussions among experimental groups have moved the focus away from
differences between experimental apparatus or procedure as the sources of primary
differences among the few high-Ra data. The new data support this conclusion and
redirect attention to flow physics. In this context, it appears to us that the confinement
of convection plays a significant role in determining the state of the flow at moderately
high Ra, and theories of infinitely extended convection may not apply in precise detail
to the high-Rayleigh-number experiments of recent origin.

This paper has several thrusts. First, we have highlighted in the intermediate-
Ra range the large differences among different experiments (exceeding experimental
uncertainties) and noted that the Nu data lie mainly in two bands as Ra varies.
The two bands are not correlated individually with either the Prandtl number or the
aspect ratio. That two experiments in the same apparatus and at nearly constant Pr
yield measurably different results at comparable Ra appears to rule out errors of
procedure; that the aspect ratio in itself is not the primary factor is supported by
the fact that the trend with aspect ratio could be different in different experiments
(contrast Wu’s data for I = 1 and 1/2 with I and the present data). This supports the
conclusion of Roche et al. (2002) that different large-scale (time-averaged) modes of
convection may be responsible for the two rough groupings of the Nu data. The large-
scale motion might itself be related in detail to the Prandtl number, the construction
of the apparatus, the aspect ratio and so forth, but these details themselves do not
matter directly.

We have examined the criteria for Boussinesq conditions and noted that little
is known about the consequences of strong non-Boussinesq conditions far from
equilibrium. Further, we have shown that the large and systematic departures at high
Ra and the sharp increases in Pr are not independent of each another in existing
high-Ra data, because they are both the result of approaching the thermodynamic
critical point of the working fluid. It is thus difficult to correlate changes in Nu with
a simple combination of Ra and Pr, or Ra and a non-Boussinesq parameter such as
Ac/Ap.

Since there is the likelihood that non-Boussinesq effects could affect heat transport
in unknown ways, we asked two questions: (a) What is the nature of the heat
transport at the highest Rayleigh numbers measured and for which stricter Boussinesq
conditions hold? (b) For conditions under which non-Boussinesq effects may not be
negligible, what qualitative remarks can be made concerning heat transport? Our
considered response to (a) is that all the data seem to be approximately consistent
with the classical power-law exponent of 1/3 (though we do not rule out slow
variations around this value) and with the prediction of Grossmann & Lohse (2001)
for region IV, of their phase plane. The possible correspondence with the classical
theory does not surprise us because the mean wind has become less effective in
this range (thus possibly removing the height of the apparatus as a parameter in the
problem), but we are aware that this conclusion needs to be set on a firmer foundation
by new measurements. With respect to (b), which includes the puzzle concerning the
differences at very high Ra between I and 11, it is clear that an additional consideration
is needed. We have argued qualitatively that the main difference is that I is closer to
being shear-driven, while II may be closer to being thermally driven. We have further
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argued that the shear-dominated case does not necessarily lead to the largest heat
transfer. This conclusion is based on relative thicknesses of the velocity and thermal
boundary layers.

The overwhelming lesson to be drawn from the work is that the experiments
in containers of small aspect ratio cannot be compared, without quantitatively
understanding the myriad details associated with finite size effects, to theories that
presume infinite lateral extent. No high-Ra experiment to-date has been made at
constant Pr and under stricter Boussinesq conditions so they can be compared to
theories that assume perfect vertical symmetry. On the other hand, we have learnt
a great deal from low-aspect-ratio measurements. For example, the Nusselt number
at a fixed Ra may depend measurably on the strength and steadiness of the mean
wind — but not on every detail such as the aspect ratio, geometry of the apparatus
and the Prandtl number. The complexity is that we do not yet understand the precise
way in which these and other details determine the mean wind. A beginning has been
made in Sreenivasan et al. (2002).

An obvious corollary is that the next generation of heat transport measurements
are best made in apparatus of large aspect ratio.

We thank L. Skrbek and R. J. Donnelly for continued collaborative work. We have
benefitted from numerous discussions with many colleagues, of whom we mention a
few: G. Ahlers, A. Bershadskii, B. Castaing, X. Chavanne, S. Grossmann (especially),
R. M. Kerr, D. Lohse, H. Meyer, P. Roche, P. Tong and R. Verzicco. The research
was supported by NSF grant DMR-95-29609.

Appendix A. The transition Rayleigh number

The Rayleigh number marking the transition of the boundary layer to the turbulent
state can be estimated as follows. This is of some interest because the nature of the
boundary layer is an important ingredient of the understanding of the flow; see,
for example, Shraiman & Siggia (1994) and Grossmann & Lohse (2000). The most
appropriate parameter characterizing the state of a boundary layer is its momentum-
thickness Reynolds number, Ry = V)0 /v, where V), is the mean wind speed and 6 is
the thickness measuring the momentum loss due to the velocity deficit in the boundary
layer. Although the boundary layers on the top and bottom walls are not as clean
as those studied on flat plates in the fluid dynamics literature, one can obtain some
estimates by invoking this idealization. The boundary layer will be considered here to
have started at a corner, from where it is assumed to develop on the top (or bottom)
wall. This picture is not too unrealistic, because the ratio of the diameter of the
apparatus to the boundary layer thickness is relatively large: at Ra = 10'2, this ratio
is of the order 100. We are interested in the state of the boundary layer nominally at
the mid-point of the bottom and top plates. Thus, the streamwise development length
x is taken to be D/2, where D is the diameter of the apparatus. This picture ignores a
number of details, but is nevertheless helpful for making plausible estimates. A simple
fit to the flat-plate boundary layer data (e.g. Wieghardt & Tillmann 1951) shows that
the momentum-thickness Reynolds number of the boundary layer is related to the
Reynolds number based on the streamwise distance x by

Ry ~ 0.019 R84, (A1)

More sophisticated fits have been used in the literature, but this simple fit will suffice
here. Noting that the Reynolds number R, = Rp)» = %RD = %F Ry, where, following
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convention, the bulk Reynolds number Ry is based on the height H of the apparatus,
we can relate Ry to Ry. Using the empirical result, whose basis will be described in
Appendix D, that Ry ~ 0.2Pr 7 Ra®*, we may rewrite the above equation as

Ry ~ 2.64 x 10730364 g0:423 py=0605, (A2)

Needless to say, the applicability of (A2) is limited to the range for which the
formula for Ry is valid. It is well-known in the turbulence literature (e.g. Preston
1958; Narasimha & Sreenivasan 1979) that a boundary layer cannot be maintained
turbulent for Ry below about 320 because the production of turbulent energy would
then fall below the rate of its dissipation. By using this value of R, in (A2), we
determine that

Ra* ~ 5.66 x 10" prl4/? (A3)

marks the minimum Ra for the boundary layer to be turbulent. There are issues
concerning the aspect ratio that are not taken into account fully in this discussion, so
(A 3) is to be regarded only as a rough guide for distinguishing the turbulent state of
the boundary layer from the non-turbulent state. Equation (A 3) is drawn in figure 2
as the long-dashed line. Other estimates using different criteria have been made by
Grossmann & Lohse (2000, 2001, 2002), and are also plotted in figure 2.

Appendix B. Effects of sidewall conduction

Some fraction of heat is always conducted from the bottom plate to the sidewall.
A proper evaluation of the Nusselt number requires that the effect of this ‘heat
leak’ be understood correctly. Naively, one may subtract the amount of heat
transmitted through the sidewall by assuming a linear temperature gradient from top
to bottom and calculating the empty-cell conduction. This commonly used procedure
is inadequate in principle because the temperature distribution along the height of
the sidewall is not linear when the flow is turbulent but is sharp near the top and
bottom walls. Thus, the heat lost from the bottom plate to the sidewall in the vicinity
of their contact can be expected to be significantly larger. However, this heat cannot
be conducted directly through the sidewall all the way to the top plate, because the
temperature gradient becoms negligible in the middle. Most of the heat must thus flow
back laterally into the fluid very near the horizontal boundary within a distance that
probably scales with the boundary layer thickness (see Roche et al. 2001), and flow
yet again into the sidewall near the top plate. Thus, nearly all the heat injected into
the bottom plate takes part in the convection process, and very little of it goes straight
through the sidewall. One may thus imagine that the effect of sidewall conduction is
not major. If so, the heat that is directly transported through the sidewall may well
not be much different from that given by the empty-cell approximation. This seems
to be borne out by comparisons of the Nusselt numbers measured in the empty-cell
approximation with those calculated by integrating the turbulent heat transport across
the apparatus (Verzicco 2002).

These two answers, even if they agree with each other, must do so for the wrong
reasons if our interest is in the problem of ‘ideal’ convection for perfectly insulated
walls. The quest then is to determine the effects of the complicated heat path on the
physics of turbulent thermal convection.

These problems have received attention by Ahlers (2001) and Roche et al. (2001),
who have devised approximate schemes to account for the sidewall conduction effects.
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In an unpublished note stimulated by Ahlers’ work, Sreenivasan (2000) simulated
aspects of the problem using a simplified flow model. Verzicco (2002) has done a
more complete analysis for aspect ratio 1/2 and Pr = 0.7. Considering the lower
portion of the cell, Verzicco indeed observed that some fraction of the heat is
conducted into the sidewall from the bottom boundary and then conducted back into
the fluid a short distance above. As already mentioned, the Nusselt numbers obtained
by integrating the turbulent stresses over the entire volume of the fluid are close to
those measured for comparable conditions using the empty-cell approximation.

However, this is not the entire answer because the Nusselt numbers obtained in this
way are substantially larger than those for perfectly non-conducting walls, i.e. when
both inner and outer surfaces of the sidewall are non-conducting. This enhancement
is attributed to the forcing of the large-scale wind when heat is transported into
the fluid (near the bottom plate) and out of it (near the top plate). For Rayleigh
numbers where the enhancement is largest, it has been demonstrated (Verzicco &
Camussi 2003) that the mean flow consists of strong toroidal roll structures near
the top and bottom plates and a weaker overall circulation spanning the cell.
At higher Ra, the toroidal structure loses dominance to the full-scale mean wind.
Furthermore, the toroidal rolls have only upflow at the bottom heated surface
and only downflow at the top cooled surface, so that the effect of lateral heat
currents near the boundaries can be seen to greatly enhance the buoyancy of
such flows.

For aspect-ratio-unity cells, the same simulations (Verzicco & Camussi 1999) show
that only the large-scale circulation around the cell circumference is dominant and
therefore the above arguments do not necessarily apply, that is the mean wind would
be subject to both enhanced and depleted buoyancy from sidewall currents. This was
proposed as an explanation for the occasional reversals of the mean flow direction
by Sreenivasan et al. (2001). In fact, it was shown there that a quantitative agreement
existed between the temperature equilibration time for the corner region of the flow,
defined in terms of the exponential thermal length scale of Roche et al. (2001) on
the one hand, and the upper cutoff scale for the probability density function of
direction-switching intervals for the mean flow on the other. We further point out
that when a mylar sheet was glued to the fluid—wall interface, the threshold for mean
wind reversals was shifted substantially upward in Ra, indicating that the strength of
lateral heating — which can upset the delicate balance between enhanced and depleted
buoyancy — was reduced.

Although much is understood about the effect of sidewall conduction, it is useful
to summarize, for three reasons, the results of the numerical solution of the idealized
problem studied by Sreenivasan (2000). First, the solution considered the heat transfer
problem for the combination of the fluid and the container as it corresponded to our
particular experiment; second, it introduced the mean wind, whose importance we
have already considered, as an explicit part of the problem. Third, the model allowed
some estimates to be made even at the highest Rayleigh numbers measured.

A schematic of the idealized flow is shown in figure 12, where it is assumed that the
flow is two-dimensional. The flow recirculates through the annular region continually,
resembling the mean wind which is prescribed from measurement. The mean flow is
allowed to vary according to measurement but its form does not change with Ra. The
boundary layers are assumed to be laminar. This idealization was motivated by the
fact that the corrections are negligible for Rayleigh numbers exceeding 10!!, below
which the Reynolds number of the mean wind is small enough for the boundary
layers to be non-turbulent (see Appendices A and D). However, the heat transport
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FIGURE 12. Schematic of (a) the mean wind at high Rayleigh numbers and () the idealized
problem solved by numerical simulations. The hatched region is assumed not to participate in
the flow. The rounding of the corners has been varied by a factor of two with no perceptible
changes in the heat transport results.

characteristics of the laminar boundary layer, including that in the corner regions,
are part of the solution. The central core is disregarded on the premise that, when the
recirculating motion is strong, it may be enough to simulate the flow fairly close to
the walls (though, on the scale of the boundary layer, it would exceed many times its
extent), without concerning ourselves with details in the core. As remarked already,
the problem was solved in conjunction with the actual dimensions and properties
of the top and bottom plates, the sidewall material properties (including flanges)
and the properties of the helium gas. Numerical simulations were performed using
commercial FLUENT code 5.0.2. For reasons of symmetry about the axes AA’ and BB’
(see figure 12), calculations were made for only one quarter of the cell ACB'E (aspect
ratio unity). Between 100 x 10° and 400 x 10 numerical grid points were used to solve
both the boundary layer and the associated heat transfer. The results show that the
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FIGURE 13. The Nusselt number data, obtained for the case of bare stainless steel walls
bounding the fluid, corrected according to the results of numerical simulations. ®, Uncorrected
Nu; O, corrected Nu. The correction is negligible beyond Ra of about 10°. The correction
schemes devised by Ahlers (2000) are similar though the magnitudes are somewhat larger.

velocity gradients are largest near the corner. While the precise details are influenced
by details of geometry, one feature that stands out in the flow is the formation of
strong corner eddies in the flow.

Figure 13 shows the Nusselt numbers obtained for the case of bare stainless steel
walls bounding the fluid modified according to this correction scheme. This correction
suggests that the various published Nusselt numbers at low Ra are overestimated. The
result is a slightly larger effective local slope in the power law than is estimated from
the raw data. Even though the present simulations attempt to replicate the properties
of the entire system, and the boundary layers are explicitly obtained as part of the
solution, the various approximations in the model imply that the corrections cannot
be precise. All that one can say is that the correction shifts a range of Nu downward
by a few percent and that this shift diminishes as the Rayleigh numbers increases.
It is notable that the thickness of the sidewall is unimportant in the simulations, i.e.
the existence of flanges adjacent to the fluid layer has no measurable effect on the
amount of correction suggested.

Details of the flow are quite complex, and the corner flow makes the situation even
more so. We surmise that the stagnant fluid within the corner eddy will continually
be heated from the bottom wall until it takes off as a large plume and disposes off
the excess heat partly into the bulk of the fluid and partly back into the sidewall.
The fraction of heat that these corner eddies transmit to the sidewall, in relation
to the amount that they discharge into the bulk of the fluid, depends on the ratio of
the thermal conductivity of the sidewall to that of the fluid. In general, the size
of the corner eddies does not scale simply with Reynolds number (and thus with
Ra), so the relative effect depends on Ra and the detailed geometry. The criterion for
negligible sidewall conduction seems to be that the sidewall conductivity should be
small compared to the molecular conductivity of the fluid. For convection studies in
helium, the thermal conductivity of the gas is typically of the order of 1072 W m~! K1,
The conductivity of the sidewalls should be smaller still. No high-Ra helium gas
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FIGURE 14. The Boussinesq parameter Qp, as defined in the text, for the present data as a
function of Ra.

experiment to-date satisfies this stringent requirement. Typically, the stainless steel
sidewalls used in these experiments have a conductivity of the order of 0.25Wm~! K1,
this being about an order of magnitude larger than that of the gas. As the Rayleigh
number increases, of course, the constraint becomes less stringent because the
molecular transport of the fluid is augmented strongly by the turbulent transport.

Appendix C. Further details on non-Boussinesq effects

Busse (1967) has constructed a weighted measure Qp = > ¢;¥; to reflect the degree
of compliance of the Boussinesq approximation, where ¥; represents the fractional
deviations of fluid properties and the coefficients ¢; depend on the Prandtl number.
It is not clear whether this measure applies to high-Rayleigh-number convection, but
it may still be useful as a qualitative indicator. We expect Qp to be of order unity or
less for the Boussinesq approximation to hold. Figure 14 shows that this condition
holds up to Ra of order 10' consistent with the statements on other Boussinesq
measures in § 6.

Most experiments on convection have not considered the non-Boussinesq effects in
detail. A rule of thumb used in I and II (with some restrictive justification) is that
the Boussinesq approximation holds whenever « AT < 0.2. It is helpful to relate the
criterion based on o AT to those based on Qp and Ac/Ay, since fluid properties
are not always available in the published literature for computing either of these
more complex parameters. We therefore plot o AT against Qp in figure 15 and
against A¢/Ay in figure 16. Not unexpectedly, all the data for Ra < 10'* lie near the
origin in both figures, and the data in the increasingly non-Boussinesq region lie very
nearly on the following straight lines:

05 ~ 0.062(aAT), Ac/Ay ~ 1.25(aAT). (C1)
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FIGURE 15. ¢ AT as a function of the Boussinesq parameter Qg defined by Busse (1967) for
the present data. A linear relation holds with slope 0.062.
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FIGURE 16. ¢ AT as a function of 1 — Ac/Apg for the present data. A linear relation holds
with slope 1.25.

It is reassuring that simple relations exist between ¢ AT on the one hand and
the more complex quantities Qp and Ac/Ag on the other. This suggests that, in
principle, one can use a AT instead of the other two, both of which require more
detailed knowledge of flow parameters. It is, of course, possible that these empirical
relations are not universally valid for all experiments, but we expect the general
features to carry over.
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Appendix D. The mean wind

In convection studies with relatively large aspect ratio, Krishnamurti & Howard
(1981) observed a component of motion spanning the entire transverse dimension of
the apparatus, bridging all the large-scale convection cells present in it. For aspect
ratios of order unity, the mean wind is correlated over the entire apparatus (e.g. Sano,
Wu & Libchaber 1989; Castaing et al. 1989; Cioni, Ciliberto & Sommeria 1996;
Takeshita et al. 1996; Xin, Xia & Tong 1996; Niemela et al. 2000a; I; II; Sreenivasan
et al. 2002). It is this mean wind that permits well-formed velocity and thermal
boundary layers to occur on the walls of the container. The wind changes direction
relatively abruptly at high Rayleigh numbers (e.g. Niemela et al. 2001a; Sreenivasan
et al. 2002), but the essential element is that it is sustained in one direction or another
for long periods of time to enable a Reynolds number Ry = Vy H/v, where V), is the
velocity of the mean wind, to be defined and boundary layers to be formed on the
walls of the container. From our measurements we find the Ra dependence (we will
consider the addition of Pr below) to be

Ry oc Ra®¥. (D1)

The exponent can be somewhat smaller or larger in various other experiments, but
this difference may be due to differences in the measurement techniques employed.

The dependence of Re on Pr has not yet been appreciated fully. To see this
dependence, we consider the experiments of different authors at different Prandtl
numbers. Takeshita et al. (1996) and Cioni et al. (1997) measured the Reynolds
number in the convection of mercury (Pr = 0.025). Similarly, Castaing et al. (1989),
and I and II measured the Reynolds number for helium gas; although Pr in their
measurements increased towards the high-Rayleigh-number end, say for Ra > 10'2,
we shall consider here their data for lower Ra for which Pr = 0.7. Sano et al. (1989)
and Xin et al. (1996) used water with Pr = O(5). Finally, Ashkenazi & Steinberg
(1999) used SF¢ with varying Pr up to about 190. If we select representative data
from each experiment and plot the measured Reynolds number against Pr at a fixed
Ra of 10'°, we obtain figure 17. It is clear that a power-law with an exponent of —0.7
is plausible. Considering the extrapolations involved, we cannot be certain that the
magnitude of the true power-law exponent, if one exists, is not a close rational number
such as 2/3 or 3/4. That the dependence is non-trivial is all that can be said with
confidence. This is particularly so because the aspect ratio among the experiments
varies between 1/2 and 1. That effect is not easy to assess.

Taking figure 17 into account, a reasonable fit to the Reynolds number data for
the experiments considered here is

Ry = f(IPr " Ra®¥, (D2)

where the factor f(I") allows for the dependence on the aspect ratio. The many
prevailing uncertainties in available measurements prevent us from determining its
magnitude accurately, but it is about 0.2 for aspect ratios of order unity.

Appendix E. Correlation with energy dissipation

To the lowest order we can correlate the various data sets with the energy
dissipation in the convection apparatus. We can write down a simplified relation
for the dimensionless dissipation as

(Nu — 1)Ra/Pr* oc Re™, (E1)
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FIGURE 17. The variation of the bulk Reynolds number Ry, for Ra held fixed at 10'°, versus
Pr from various sources of data: O, I; A, II; O, Ashzenazi & Steinberg 1999, extrapolated;
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FIGURE 18. The dimensionless dissipation (Nu — 1)Ra/Pr* as a function of Ry =

0.2Ra’**Pr="7. The average dissipation is given to good approximation by the line 9R%°’
over a large range of values. A, II; O, present data; x, I; x, Pr = 0.7, Roche (2001);
V, Pr = 1.5, Roche (2001); ©, Pr = 1.1, Roche (2001).

where m = 3 for turbulent dissipation and 5/2 for the laminar. Grossmann & Lohse
represent the general form for the dissipation as a linear combination of terms
involving the exponents 3 and 5/2. In figure 18 we plot (Nu — 1)Ra/Pr* versus the
Reynolds number associated with the mean flow given by (D2) for a number of
recent high-Ra experiments in helium gas. Taking a common prefactor of 0.2 in (D2)
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for all data sets, we may write
NuRa/Pr* ~ CRe*". (E2)

Excellent collapse of all experimental data is found for over 4 decades of Reynolds
number (corresponding to about 8 decades of Ra). The proportionality constant in
(E2) is about 9. Similar to our earlier discussion of Nu, (E2) with C = 9 seems,
then, a reasonable characterization for the dimensionless dissipation to the highest Ra
for which stricter Boussinesq conditions hold. Since the scaling of the dissipation is
related to that of Nu, this may be regarded as giving the lowest-order approximation
of Nusselt number that ignores the various details affecting Nu in the low- and
intermediate-Ra regimes. Interestingly, the data of Creveling et al. (1975) obtained
in an analogous experiment involving convection in a heated circular loop follow
the same form in the turbulent regime and agree well quantitatively with this result.
Though one should not trust all the detailed implications of this observation, we
believe the result may be usefully, though cautiously, extrapolated.

Appendix F. Further details on boundary layer development

Some of the critical relations needed to obtain (7.4) and (7.5) are noted here. From
the definition of §i, it is easy to show that

51/8 = 2/(csRs). (F1)

where ¢ is the skin friction coefficient (= t/pVy, with T and p the shear stress at
the wall and the fluid density, respectively) and R; = Vj,6/v, 8 being the conventional
definition of the boundary layer thickness used in aerodynamics, namely the distance
from the wall where the velocity reaches some prescribed fraction such as 99% of the
maximum velocity, Vy,. Writing

81/H = (81/8)(8/H), (F2)

and using (F 1) and the standard boundary layer correlations for the second ratio on
the right-hand side, one may obtain the ratio 8;/H. This required correlation can be
obtained, for example, from the analysis of the boundary layer data of Wieghardt &
Tillmann (1951) at high Reynolds numbers. From this analysis we have

crRy ~ 0.0169R)™, Ry ~ R¥®4/7, (F3)

where x is the distance from the point at which the boundary layer develops. Here,
focusing attention on the mid-point of the bottom wall, we note that R, has the
meaning of the Reynolds number based on the radius of the convection cell, and is
therefore equal to (I'/2)Ry ~ 0.1 Pr—""Ra®* because of (D 2). Using (7.1), we can
now obtain §;/A.

To obtain §,/4, the following additional facts are needed. In turbulent boundary
layers, the vertical distance at which the Reynolds shear stress is equal to the viscous
stress is about 12v/u., where the so-called friction velocity u., is given by the definition
that pu? = 7. From the analysis of the data of Wieghardt & Tillmann (1951), we
have

R, =u.é/v= RS‘7O9. (F4)
A little algebra puts the rest of the details in place as above.
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